
Investigating the Impact of High-Level Software
Design on Low-Level Hardware Fault Resilience

Bohan Zhang1, Lishan Yang2, Guanpeng Li1, Hui Xu3
1 Computer Science Department, University of Iowa, Iowa City, IA, USA

2 Department of Computer Science, George Mason University, Fairfax, VA, USA
3 School of Computer Science, Fudan University, Shanghai, China

bohan-zhang-1@uiowa.edu, lyang28@gmu.edu, guanpeng-@uiowa.edu xuh@fudan.edu.cn

Abstract—Silent Data Corruptions (SDCs) have become an
insurmountable issue that threatens the system reliability. Gen-
eral strategies for protecting programs from SDCs, such as
dual modular redundancy, incur intolerable overheads. Another
strategy is Algorithm-Based Fault Tolerance which is highly
bounded to the specific algorithm and hard to generalize. In this
study, we find different implementations of the same algorithm
may lead to very different SDC probabilities. We conduct a
characterization study to quantify the differences and investigate
the root causes. The insights we derive could help and guide the
developers in software engineering domain to design programs
that is naturally resilient.

Index Terms—Silent Data Corruption, Error Resilience, Fault
Injection, SDC, Program Analysis, Software Testing

I. INTRODUCTION

With the fast development of semiconductor technology, the
number of transistors is significantly increasing in computer
systems, leading to a huge gain of computing power. However,
the risk of soft errors (i.e., hardware transient faults) [1]
is increasing due to various factors such as silicon decay or
cosmic radiation, which can lead to data loss or corruption. In
fields that require precise computation results, such as medical
applications and numerical computing, soft errors can cause
catastrophic events such as critical safety issues and economic
losses. Therefore, reliability analysis and enhancement are
necessary to protect systems from soft errors.

Silent Data Corruptions (SDCs) have become an insur-
mountable issue threatening system reliability [2]–[5]. It is
difficult to detect and diagnose compared to the other error
types, i.e., crashes and hangs. When an SDC happens in
program execution, it does not have noticeable signs and symp-
toms but omits incorrect outputs. Typically, SDC probability is
measured through fault injection experiments. A higher SDC
probability shows that the application is more vulnerable. To
mitigate the SDC, an industry solution usually applies Triple
Modular Redundancy (TMR) to the vulnerable instructions of
the program that we need to protect [6]–[8] but carrying out
such a protection strategy usually requires colossal energy and
computation resources. For example, applying full protection
using TMR on a program will give rise to 100% overhead.

Blindly applying full protection introduces huge perfor-
mance degradation. In this work, for the first time, we bring
the idea of studying coding behavior from the software en-
gineering domain to reliability by investigating the impact of

different implementations on application resilience. Different
programmers have their own coding styles and preferences,
resulting in various differences at the code level (i.e., function
calls and instruction orders), even when implementing the
same algorithm. We collect five different implementations of
BubbleSort from GitHub and conduct fault injection exper-
iments for each implementation to obtain the overall SDC
probabilities. Comparing these SDC probabilities, we find that
some implementations exhibit low SDC probability and high
performance. To find out the reasons behind, we propose a
methodology to evaluate every difference in each two of those
implementations and why these differences lead to different
SDC probabilities. Insights are derived as the results to guide
programmers or software engineers to write optimized reliable
programs.

Our contributions in this paper are summarized as follows:
• We conduct a detailed characterization study on five

different implementations of BubbleSort and show that
different implementations have different overall SDC
probabilities.

• We perform the per-instruction fault injection to every
instruction of every implementation in BubbleSort to
evaluate the SDC probabilities of each instruction.

• We propose an approach to systematically analyze and
quantify the differences of implementations and their
impact on the SDC probability.

• Based on the observations from the characterization
study, insights of improving reliability can be derived.
We showcase this by identifying an observed difference
and derive the insight accordingly.

The remaining of the paper is organized as follows. In In
Section II, we describe our approach. Then, we demonstrate
results and Observations in Section III. In Section IV and V,
we present the future work and conclusion.

II. METHODOLOGY

A. Fault Model

In our research, we utilize a prevalent single-bit fault
model in the field of error resilience [9]–[12]. Our study is
specifically directed towards soft errors in the computing units
of processors such as pipeline stages, flip-flops, and functional
units. We omit the memory or cache faults, as we presume

that the Error Correction Code (ECC) technique can safeguard
them. Faults in the control flow logic of processors, such as
illegal addresses, are not taken into account since they can be
easily detected. However, the program may execute to a wrong
but legal branch as we consider the program-level control flow
in our fault model.

B. LLFI

In this work, we perform the fault injection campaign
using LLFI (Low-Level Fault Injection) which is a tool for
evaluating the robustness of software systems against hardware
faults [13], [14]. LLFI injects faults into compiled binary
code at the low-level intermediate representation (LLVM-
IR) level [15], [16], which allows researchers and developers
to study the impact of faults on program behaviors. LLFI
provides a low-cost, flexible and customizable platform for
experimenting with different fault scenarios and evaluating the
resilience of a system against these faults.

C. Our Approach

Figure 1 shows the high-level workflow of our approach.
The key of this approach is to identify observed differences
(ODs) between implementations of the same algorithm and
investigate why these ODs lead to different SDC probabilities.
First, given a target algorithm, we collect implementations
from GitHub or other similar sources. Note that the correctness
of implementations is verified in this step. For every imple-
mentation, we use the same randomly generated input with
a reasonable large input size to provide adequate dynamic
instructions (DI) for accurate fault injection results. For each
implementation, we perform 1,000 random fault injection
experiments to get the overall SDC probability. For each
static instruction, we retrieve the DI count by profiling and
use it as a proxy to reflect the application performance (i.e.,
more DIs lead to longer execution time). We also conduct
a per-instruction fault injection campaign for each of the
implementations to obtain the SDC probability of each static
instruction.

To identify an OD, for the same algorithm, we first divide
the algorithm into standard components that each implementa-
tion must follow. For each component of different implemen-
tations, the comparison is done at the source code level, then
IR level. The comparison at the source code level excludes
the differences in variable names and format variations such
as indent and space, then any other differences are marked
as an identified difference and we further look into the IR
level. At the IR level, the differences include (1) the types of
instructions, (2) the number of instructions, and (3) the order
of instructions. If an identified difference has been confirmed
at the two levels (both source code and IR levels), then we
mark it as an OD.

In addition, the SDC probabilities of each component is
calculated using the SDC probability of each static instruction

in this component weighted by the DI count. The equation is
shown as following:

SDC ProbComponent =

n∑
i=1

SDC Probi ×#DIi
#DIoverall

, (1)

where n denotes the number of static instructions in the
component.

After we collect all the ODs, we perform a controlled ex-
periment for those two implementations. The primary purpose
of the controlled experiments is to verify whether those ODs
affect the SDC probabilities. Figure 2 shows the logic of the
controlled experiment. For each OD, we compare the SDC
probability of the component in two implementations. Our
hypothesis is that if the SDC probability of a component is
higher than the other one, replacing the component with the
lower SDC probability would result in a modified implemen-
tation with a lower overall SDC probability. To confirm this
hypothesis, we perform another fault injection campaign to
the modified implementation. We compare the overall SDC
probability of the modified implementation with the original
implementation. If the modified implementation has lower
SDC probability and the DI number is similar (i.e., similar
performance), then the result has verified the hypothesis and
an insight is generated. These insights could guide the software
engineers to write programs with lower SDC probabilities.

III. PRELIMINARY RESULTS

A. Experimental Setup

We use a Debian server with two 20-core Intel CPU pro-
cessors to run fault injection experiments in parallel. We start
over with a simple sorting algorithm: BubbleSort. Algorithm
1 shows the pseudo code. It repeatedly steps through the input
list element by element, comparing the current element with
the one next to it, swapping their values if smaller. We divide
the algorithm into three components: Outer Loop, Inner Loop,
and Swaption. we crawl five different C++ implementations
from different authors from GitHub, noted as P1 – P5. we
randomly generate an array of 20,000 integers ranging from 0
to 1,000,000 as the program input for all implementations.

Algorithm 1 Bubble Sort
1: procedure BUBBLESORT(A)
2: n← |A|
3: for i← 1 to n− 1 do ▷ Outer loop
4: for j ← 0 to n− i− 1 do ▷ Inner loop
5: if Aj > Aj+1 then ▷ Swaption
6: swap Aj and Aj+1

7: end if
8: end for
9: end for

10: end procedure

B. Overall Analysis of Implementations

For each implementation, we perform a fault injection
campaign by randomly sampling 1000 fault sites (i.e., fault

Collect
Implementations

Target
Algorithms/Pro

blems

Random Fault
Injection

Per-Instruction
Fault injection

Identify
Obsvered

Difference (ODs)

Controlled
Experiment Insights

Perform

Conduct

Generate
hypothesis

Derive
Select

Investigate

Fig. 1. Overview of our approach.

Componet 1

Componet 2

Componet 3

Implentation 1

Componet 1

Componet 2

Componet 3

Implentation 2

Componet 2

Componet 3

Implentation 1’

Componet 1
replacing

component 1

An OD was found in component 1,
and component 1 in

Implementation 2 has lower SDC
probability.

Fig. 2. Overview of a controlled experiment.

locations) and injecting one fault per program execution to
obtain the SDC probability. Our fault injection measurement
yields an error bar from 0.26% to 3.10% for the 95% confi-
dence intervals.

Figure 4 shows the obtained SDC probabilities of the five
implementations. The SDC probabilities vary from 4% (P5) to
26.7% (P2), which shows that different high-level code designs
have different SDC probabilities. Table I presents the DI count
of these five implementations, ranging from 9,088,698,022
(P5) to 5,489,077,998 (P4). Note that the DI count of P5
is significantly higher than the other four implementations
due to the poor implementation in P5. For the other four
implementations, the inner loop terminates when its index is
equal to or greater than the size of the input array (i.e., the
loop iterations start from 0 till n− i−1). In P5, the inner loop
iterates from 0 to n−1, causing many duplicated loop cycles.
Many SDCs are masked during loop cycles but introduce huge
overhead.

C. Observed Difference and Insight

In this subsection, we present an OD to showcase our
methodology. The presented OD is the swaption of P1 and P2:

Observed Difference: The swaption in P1 is through a
function call whereas it is directly inlined in P2.

In detail, the swaption in P1 uses the built-in function
from the C++ code libraries and P2 implements the swaption
functionality inside the inner loop. Considering the LLVM-IR
level code difference, because P2 uses the inline function, it

must use more instructions than P1, such as getelementptr and
sext. These redundant instructions contributes to a higher SDC
probability.

TABLE I
NUMBER OF DYNAMIC INSTRUCTIONS OF 5 PROGRAMS.

Implementations Number of Dynamic Instructions
P1 5,889,058,005
P2 6,087,856,752
P3 5,685,594,374
P4 5,489,077,998
P5 9,088,698,022

We conduct per-instruction fault injection campaigns for
each implementation by performing 100 random fault injection
experiments to each static instruction, resulting in an error bar
from 0.00% to 3.10% for the 95% confidence intervals. From
the per-instruction fault injection results, Figure 3 shows the
SDC probability of the swaption component for the P1 and
P2, which are 22.53% and 40.81%, respectively.

The DI counts of P1 and P2 are very close, indicating that
the performance is also similar. Since the SDC probability of
the swaption in P1 is lower than that of P2, if we replace
the swaption in P1 with the implementation of P1 to generate
P2’, then the overall SDC probability of P2’ will be lower
than P2. To confirm this hypothesis, we perform another set
of fault injection experiments to evaluate the overall SDC
probabilities of P1, P2, and P2’, as shown in Figure 5. The
SDC probability of P2’ is only 18.5%, which is reduced
by 8.2% compared to P2. Hence, the result proves our
hypothesis. Therefore, we derive an insight:

Insight: Using function call other than inlined function
could reduce the SDC probabilities.

We can apply this insight to any other high-level code design
to write a robust program with lower SDC probability. We
emphasize that the purpose of this analysis is to derive useful
insights that could guide programmers to write more reliable
applications rather than just improving the resilience of P2.

IV. FUTURE WORK

In this section, we outline the possible future directions.

Outer Loop Inner Loop Swaption
Componets

0%

10%

20%

30%

40%

50%

60%

70%

SD
C

 P
ro

ba
bi

lit
ie

s

51.0%

28.12%

22.53%

59.0%

27.14%

40.81%

24.5%

32.5%

19.43%

30.0%

21.86%

34.4%

46.67%

0.0%

22.47%

P1
P2
P3
P4
P5

Fig. 3. SDC Probabilities for each component in each implementation

P1 P2 P3 P4 P5
Implementations

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

O
ve

ra
ll

SD
C

 P
ro

ba
bi

lit
ie

s

17.5%

26.7%

19.1% 20.07%

4.0%

Fig. 4. Overall SDC Probabilities of 5 Programs

P1 P2 P2'
Implementations

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

O
ve

ra
ll

SD
C

 P
ro

ba
bi

lit
ie

s

17.5%

26.7%

18.5%

Fig. 5. Overall SDC Probabilities with modified versions

A. Understanding High-Level Software Design on Low-Level
Hardware Fault Resilience

One of the main future directions we are planning is to
have a more comprehensive study on characterizing how
different code fragment designs will impact on hardware fault
resilience. We plan a large-scale experiment which includes a
broad spectrum of benchmark programs from various domains,
quantifying their design and resilience. Furthermore, we are
interested in understanding the root-causes why certain code
designs lead to high or low hardware fault resilience, which
may offer insights in generating new code structures of high
reliability on our own. Our preliminary study on the applica-
tions of BubbleSort in this paper provides a positive feedback
on the feasibility of the direction.

B. Guidance on Implementing Reliable Software

Based on the characterization, we are planning a further in-
depth study on analyzing the implications of the observations,

generating a set of useful guidance which provide a mean of
designing reliable programs for software developers. Without
time-consuming fault injections or additional analysis, devel-
opers can choose the alternative code fragments and designs
of high reliability, improving the natural fault tolerance of the
program out of the box.

V. CONCLUSION

In this work, we focus on analyzing the resilience of
different implementations given a target algorithm/problem
to help software engineers write more reliable programs. We
propose a methodology to collect different implementations,
perform reliability analysis, identify observed differences and
conduct a controlled experiment on the ODs, to derive useful
insights. We present a complete analysis on BubbleSort to
showcase the feasibility of this approach. In the future, we
aim to generalizing the methodology and coming up with a
complete guidance for writing more reliable code especially
for safety critical applications [17]–[20].

REFERENCES

[1] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian,
“Mitigating soft error failures for multimedia applications by selective
data protection,” in Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded systems, 2006, pp.
411–420.

[2] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent data corruptions at scale,” arXiv
preprint arXiv:2102.11245, 2021.

[3] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Model-
ing soft-error propagation in programs,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2018, pp. 27–38.

[4] L. Yang, B. Nie, A. Jog, and E. Smirni, “Sugar: Speeding up gpgpu
application resilience estimation with input sizing,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 5, no. 1,
pp. 1–29, 2021.

[5] D. Kuvaiskii, R. Faqeh, P. Bhatotia, P. Felber, and C. Fetzer, “Haft:
Hardware-assisted fault tolerance,” in Proceedings of the Eleventh Eu-
ropean Conference on Computer Systems, 2016, pp. 1–17.

[6] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated in-
structions in super-scalar processors,” IEEE Transactions on Reliability,
vol. 51, no. 1, pp. 63–75, 2002.

[7] C. Kalra, F. Previlon, N. Rubin, and D. Kaeli, “Armorall: Compiler-based
resilience targeting gpu applications,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 17, no. 2, pp. 1–24, 2020.

[8] D. Kuvaiskii, O. Oleksenko, P. Bhatotia, P. Felber, and C. Fetzer, “Elzar:
Triple modular redundancy using intel advanced vector extensions,”
Technical Report, 2016.

[9] Y. Huang, S. Guo, S. Di, G. Li, and F. Cappello, “Mitigating silent
data corruptions in hpc applications across multiple program inputs,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2022, pp. 1–14.

[10] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: probabilistic
soft error reliability on the cheap,” ACM SIGARCH Computer Architec-
ture News, vol. 38, no. 1, pp. 385–396, 2010.

[11] Y. Huang, S. Guo, S. Di, G. Li, and F. Cappello, “Hardening selective
protection across multiple program inputs for hpc applications,” in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2022, pp. 437–438.

[12] M. H. Rahman, A. Shamji, S. Guo, and G. Li, “Peppa-x: finding
program test inputs to bound silent data corruption vulnerability in hpc
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–13.

[13] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “Llfi:
An intermediate code-level fault injection tool for hardware faults,” in
2015 IEEE International Conference on Software Quality, Reliability
and Security. IEEE, 2015, pp. 11–16.

[14] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware faults,” in
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2014, pp. 375–382.

[15] G. Li and K. Pattabiraman, “Modeling input-dependent error propagation
in programs,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2018, pp. 279–
290.

[16] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding
error propagation in gpgpu applications,” in SC’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2016, pp. 240–251.

[17] B. Zhang, Y. Huang, and G. Li, “Salus: A novel data-driven monitor
that enables real-time safety in autonomous driving systems,” in 2022
IEEE 22nd International Conference on Software Quality, Reliability
and Security (QRS), 2022, pp. 85–94.

[18] J. C. Knight, “Safety critical systems: challenges and directions,” in Pro-
ceedings of the 24th international conference on software engineering,
2002, pp. 547–550.

[19] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. Iyer, “Av-fuzzer: Finding safety violations in autonomous driving
systems,” in 2020 IEEE 31st international symposium on software
reliability engineering (ISSRE). IEEE, 2020, pp. 25–36.

[20] M. Gharib and P. Giorgini, “Modeling and analyzing information in-
tegrity in safety critical systems,” in Advanced Information Systems En-
gineering Workshops: CAiSE 2013 International Workshops, Valencia,
Spain, June 17-21, 2013. Proceedings 25. Springer, 2013, pp. 524–529.

